Зарождение линейного программирования

Также неравнозначен спрос потребителей: он составляет соответственно 40, 85 и 55 т. Неодинаковы и расстояния - плечи перевозки грузов - от 1 до 6 км. Задача заключается в том, чтобы составить такой план перевозок, который отвечал бы требованию минимизации грузооборота (минимальному количеству тонно-километров).

В повседневной практике менеджеры могут заняться монотонной работой по длительному перебору возможных вариантов. Постепенно они смогут «пройти» от плана перевозок, скажем, в 750 т/км к плану в 655 т/км. Поиск потребует массу усилий, значительного количества расчетов. Главное же - трудно установить, какой из предлагаемых вариантов является оптимальным. Допустим, найден вариант плана с грузооборотом в 575 т/км.

Но остается неизвестным, нет ли еще одного или нескольких более выгодных вариантов плана, требующих меньших затрат.

Задача становится совсем неразрешимой, если перейти от сравнительно простой схемы к составлению варианта перевозок одного или нескольких продуктов (угля, цемента, стройматериалов) в масштабе региона или страны. Даже в случае укрупнения, агрегирования исходных показателей расчеты и сопоставления вариантов потребуют проведения такого количества операций, для осуществления которых придется привлечь чуть ли не все население Украины.

Метод линейного программирования позволяет найти оптимальное решение. Линейным оно называется потому, что основывается на решении линейных уравнений. Неизвестные в них только первой степени; ни одно неизвестное не перемножается на другое неизвестное. Такие уравнения отражают зависимости, которые могут быть изображены на графике прямыми линиями.

Несколько иной целевой критерий в задаче о диете (кормовом рационе). Задача сводится к поиску оптимального рациона для кормления скотины или птицы. При постоянном изменении рыночных цен на корма фермеры подбирают оптимальный рацион при минимуме затрат, производя соответствующие расчеты на компьютере.

Впервые работа, в которой излагалось существо предложенного Канторовичем метода, была опубликована в 1939 г. под названием «Математические методы организации планирования производства». Продолжая исследования, ученый разрабатывает общую теорию рационального использования ресурсов.

В период Великой Отечественной войны, будучи профессором Военно-морской инженерной академии в блокадном Ленинграде, Канторович, опираясь на метод линейного программирования, обосновывает оптимальное размещение производственных и потребительских факторов. В 1942 г. он подготовил книгу «Экономический расчет наиболее целесообразного использования ресурсов», которая в тот период, к сожалению, не была опубликована.

Позже издается одна из наиболее крупных его работ «Экономический расчет наилучшего использования ресурсов» (1959). В этой книге, как отмечали члены Научного совета по применению математики в научных исследованиях и планировании, представлен углубленный анализ идей линейного программирования, разработанного автором ранее, и вместе с тем впервые ставится проблема разработки оптимального плана всего народного хозяйства как математической модели. Несомненной заслугой Канторовича является выявление двойственных оценок в задачах линейного программирования. Нельзя одно временно минимизировать затраты и максимизировать результаты. Одно противоречит другому. Вместе с тем оба этих подхода взаимосвязаны. Если, скажем, найдена оптимальная схема перевозок, то ей соответствует определенная система цен. Если найдены оптимальные значения цен, то сравнительно нетрудно получить схему перевозок, отвечающую требованию оптимальности.

Для любой задачи линейного программирования существует сопряженная ей, или двойственная задача. Если прямая задача заключается в минимизации целевой функции, то двойственная - в максимизации.

Двойственные оценки дают принципиальную возможность соизмерять не только ценовые, затратные показатели, но и полезности. При этом двойственные, взаимосвязанные оценки соответствуют конкретным условиям. Если изменяются условия, меняются оценки. В известной мере поиск оптимума - это определение общественно необходимых затрат, учитывающих, с одной стороны, трудовые, стоимостные затраты, а с другой-общественные потребности, полезности продукта для потребителей.

При непосредственном участии Канторовича и его ближайших коллег - В.В. Новожилова (автора идеи продуктово-трудового баланса) и В.С. Немчинова (обосновавшего глобальный критерий функционирования экономики) формировалась отечественная экономико-математическая школа.

Заключение

На первый взгляд, теории Л. В. Канторовича были, как он сам говорил приспособлены к плановой экономике, и т.д. Но это лишь внешняя сторона дела. Главное - учет скрытых параметров (рента), единый подход к ограничениям (труд - всего лишь одно из них) и все, что отсюда вытекает - делают его экономические приложения универсальными и необходимыми сейчас. Вообще, главный итог великого эксперимента Канторовича в том, что он подошел к экономическим проблемам вооруженный самыми современными для тех лет математическими средствами, и творчески применял их. Это не значит, что его выводы будут полностью работать и сегодня, но это, безусловно, значит, и в этом отношении Л.В. Канторович был, возможно, первым, что талант математика может в корне переустроить и преобразовать экономическую мысль.

Перейти на страницу: 1 2 

Похожие статьи ...

Конкуренция, её виды, место и роль в современном хозяйственном механизме развитых стран
Тема конкуренции актуальна в современной экономической науке, так как конкуренция является одной из важнейших составляющих механизма функционирования рыночного хозяйства. Конкуренция вынуждает к более рациональному поведению хозяйствующих субъектов. Она являетс ...

Научно-технический прогресс на примере Японии
Со временем, развитие экономики отводит на второй план традиционные факторы экономического роста и развития сопутствующих сфер. Сейчас одним из приоритетных критериев развития, а также и сферой наибольшей прибыли является научно-технический прогресс. Неслуча ...